Latest Post

Generations of Operating systems

Operating systems, like computer hardware, have undergone a series of revolutionary changes called generations. In computer hardware, generations have been marked by major advances in component  from vacuum tubes (first generation), to transistors (second generation), to integrated circuitry (third generation), to large-scale and very large-scale integrated circuitry (forth generation). The successive hardware generations have each been accompanied by dramatic reductions in costs, size, heat emission, and energy consumption, and by dramatic increases in speed and storage capacity.
  • The 1940's - First Generations
  • The 1950's - Second Generation
  • The 1960's - Third Generation
  • Fourth Generation (1971-Present) Microprocessors
  • Fifth Generation (Present and Beyond) Artificial Intelligence

The 1940's - First Generations

The earliest electronic digital computers had no operating systems. Machines of the time were so primitive that programs were often entered one bit at time on rows of mechanical switches (plug boards). Programming languages were unknown (not even assembly languages). Operating systems were unheard of .

The 1950's - Second Generation

By the early 1950's, the routine had improved somewhat with the introduction of punch cards. The General Motors Research Laboratories implemented the first operating systems in early 1950's for their IBM 701. The system of the 50's generally ran one job at a time. These were called single-stream batch processing systems because programs and data were submitted in groups or batches.

The 1960's - Third Generation

The systems of the 1960's were also batch processing systems, but they were able to take better advantage of the computer's resources by running several jobs at once. So operating systems designers developed the concept of multiprogramming in which several jobs are in main memory at once; a processor is switched from job to job as needed to keep several jobs advancing while keeping the peripheral devices in use.
For example, on the system with no multiprogramming, when the current job paused to wait for other I/O operation to complete, the CPU simply sat idle until the I/O finished. The solution for this problem that evolved was to partition memory into several pieces, with a different job in each partition. While one job was waiting for I/O to complete, another job could be using the CPU.
Another major feature in third-generation operating system was the technique called spooling (simultaneous peripheral operations on line). In spooling, a high-speed device like a disk interposed between a running program and a low-speed device involved with the program in input/output. Instead of writing directly to a printer, for example, outputs are written to the disk. Programs can run to completion faster, and other programs can be initiated sooner when the printer becomes available, the outputs may be printed.
Note that spooling technique is much like thread being spun to a spool so that it may be later be unwound as needed.
Another feature present in this generation was time-sharing technique, a variant of multiprogramming technique, in which each user has an on-line (i.e., directly connected) terminal. Because the user is present and interacting with the computer, the computer system must respond quickly to user requests, otherwise user productivity could suffer. Time-sharing systems were developed to multiprogramming large number of simultaneous interactive users.

Fourth Generation

With the development of LSI (Large Scale Integration) circuits, chips, operating system entered in the system entered in the personal computer and the workstation age. Microprocessor technology evolved to the point that it become possible to build desktop computers as powerful as the mainframes of the 1970s. Two operating systems have dominated the personal computer scene: MS-DOS, written by Microsoft, Inc. for the IBM PC and other machines using the Intel 8088 CPU and its successors, and UNIX, which is dominant on the large personal computers using the Motorola 6899 CPU family.

SHARE THIS POST

Author: Robin Saxena
I m computer science student and i Interested in cs, c/c++ programming, java, html ,Photography , Music , and generally connecting with others.